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Indicator Simulation Accounting for Multiple-Point
Statistics!

Julian M. Ortiz* and Clayton V. Deutsch?

Geostatistical simulation aims at reproducing the variability of the real underlying phenomena. When
nonlinear features or large-range connectivity is present, the traditional variogram-based simulation
approaches do not provide good reproduction of those features. Connectivity of high and low values
__is often critical for grades in a mineral deposit. Multiple-point statistics can help to characterize
these features. The use of multiple-point statistics in geostatistical simulation was proposed more than
10 years ago, on the basis of the use of training images to extract the statistics. This paper proposes
e use of multiple-point statistics extracted from actual data. A method is developed to simulate
ontinuous variables. The indicator kriging probabilities used in sequential indicator simulation are
modified by probabilities extracted from multiple-point configurations. The correction is done under
the assumption of conditional independence. The practical implementation of the method is illustrated
with data from a porphyry copper mine.

KEY WORDS: geostatistics, multiple-point statistics inference, sequential indicator simulation,
conditional independence.

INTRODUCTION

eostatistical realizations permit the calculation of Jjoint uncertainty, that is, the
uncertainty over arbitrary large volumes. For example, the probability and grades
selective mining units above specified cutoffs can be obtained from a suite
simulated realizations. Estimates can be obtained from multiple realizations
der any measure of goodness, not only the minimization of the mean-squared
timation error (Deutsch, 2002; Journel, 1989).

~ Conventional simulation techniques account only for 2-point statistics through
variance (or variogram) model. The use of multiple-point statistics was pro-
1 more than 10 years ago (Deutsch, 1992; Guardiano and Srivastava, 1993);
wever, all developments have been based on the use of training images for
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function in a nonlinear fashion (Caers, 1998).
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Most previous proposals were aimed at petroleum applications. All imple-
mentations assume that multiple-point statistics are available. In petroleum ap-
plications, few local data are available, hence training images are considered for
inferring multiple-point statistics. One concern is the reproduction of features that
belong to the training image, but not to the underlying process that is being sim-
ulated. We may want to reproduce the general appearance of the training image
but not all its details. Caers proposed to split the training data into a training
set and a validation set. Then, the validation set can be used to detect when the
training of the neural network is overfitting the training set (Caers, 1998). How-
ever, the question of which features should be extracted from the training image
is difficult and unavoidably subjective. Furthermore, transferring statistics from
the training image to the realization is a problem. The univariate and bivariate
statistics of the training image may not be exactly the same as those of the study
area.

We propose a method to integrate multiple-point statistics into geostatistical
simulation. The method is general and could be applied in petroleum or mining.
We demonstrate the implementation of the proposed method with a mining case
study, where the multiple-point statistics are extracted from production data, rather
than a training image. Data come from deemed representative mined-out areas.
The more statistics we can reliably infer from the data and pass into the simulated
realizations, the better the performance of the numerical models.

STATISTICAL INFERENCE OF MULTIPLE-POINT STATISTICS

The probabilities of multiple-point events can be estimated by their relative
frequencies found in a data set. Of course, inference will only be possible if
multiple replications of an event are available to calculate its frequency. In practice
most of the samples are taken at drillholes as almost linear strings. The frequencies
of low-order statistics (3- to 5-point configurations), such as the indicator values
for strings of multiple composites in the vertical direction may be calculated. Tt
would be difficult to use drillhole data to infer curvilinear features. Closely spaced
blasthole data may be useful.

Stationarity must be assumed. The decision must be made to pool data to-
gether for inference. The simulated realizations may not perform well if the data
are not representative of the domain under study. Of course, the resulting simulated

models will also be unreliable if there are not enough data to infer the required
statistics.

The application of conventional kriging-based geostatistical simulation re-
quires consistent or positive-definite statistics. We propose an updating approach
that removes the need for positive definiteness of the models. Any inconsistency

will be reflected as order relations in the final conditional distributions, as it occurs
in indicator kriging-based methods.
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UPDATING THE INDICATOR KRIGING PROBABILITY
WITH MULTIPLE-POINT STATISTICS

We are interested in calculating the probability of a variable Z not to exceed
a threshold z; at location u, which we will call event A. We have a number of
events R that inform this location, noted as By, . . ., By, to calculate the conditional
probability of A at u. These R events may correspond to any arrangement of any
number of data at any volume support. They can be disjoint or have elements in
common. They can be considered as sets of elements, such as the samples used in
kriging to estimate the value at an unsampled location, or they can be considered
as a joint event, such as a multiple-point event, that is, a configuration of multiple
samples.

Consider the case where information from several different sources is used to
estimate the conditional probability of event A. Bayes’ law gives a formalism to
calculate this conditional probability. These different sources of information can
be integrated to estimate the posterior conditional probability of A:

P(A,By,...,Bp)
P(B;,...,Bg)

P(ABy,...,Bg) = (D

This expression requires the knowledge of the joint distribution of the events
B, ..., Bg with event A, that is, P(A, By, ..., Bg), and the joint distribution
of the events informing A, P(By, ..., Bg). These multivariate distributions are
difficult to infer.

Recursive application of Bayes’ law permits Equation 1 to be rewritten as

P(AIBy,...,Bg)
= P(Br|A,By,....,Br_1)- P(Br_1|A,By,...,Br_2)--- P(B{|A)- P(A)
P(B],...,BR)

@

This expression can be simplified under assumptions of conditional independence,
which will allow the calculation of the numerator. If two expressions with the same
denominator are considered, the expression in the denominator does not need to
be known, since it can be removed by taking a ratio between them.

Assumption of Conditional Independence

The assumption of conditional independence (also called permanence of ra-
tios) is a way around the problem of knowing the joint probabilities of By, ..., By
and A, By, ..., Bg (Journel, 1993, 2002). Conditional independence between the
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Flgurg 1. Bayesian network representing the Naive Bayes classi-
fier w1t}'x att‘rlbutes B;,B,, ..., Br. The conditional independence
assumption is shown as no connectors between the attributes. o @

events B;,i =1,..., R, given A is assumed. This corresponds to the same as-

sumption of the Naive-Bayes model in statistical classification and it is usuall
deplcted as a Bayesian network (Fig. 1) (Frank and others, 2000; Friedman 1997}'1
Frledmgn, Geiger, and Goldszmidt, 1997; Ramoni and Sebastiani, 2001) ’ ’
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P(BRrIA, By, ...,Bz_|) = P(Bgr|A)
P(Bg_1|A,By,...,Bz_,) = P(Br_i|A)

P(B,|A, B;) = P(B,|A)
The conditional probability in Equation 2 can now be written as

P(A[B, By — PBrIA)- P(BeiA)--- P(B]A) - P(A)
e P(B,,.. By 3)

We can also write the expression for the conditional probability of A not occurring

(the complement of A, which we will denote A) imi
CO , . Under a 1 i
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P(A[By, ... Bp) _ PBg|A)- P(Br_(|A)--- P(B|A) - P(A)
P(A[By,....Br) ~ P(Bgr|A)- P(Bx_|A).-- P(Bi|A)- P(A) ®
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Equation 5 can be rewritten as
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P(A[BR)-P(Bg) P(A\BR;)l(gl;’( R=1) .. o (
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np, single-point events provided by the indicator coded sample data and previ-
ously simulated nodes. Together, these 7 B, events define the event B;s Indicator
kriging provides the conditional probability P(A|B;), which only accounts for
2-point statistics: the indicator-covariances between indicator-coded samples and
previously simulated nodes and between them and the location of interest.

The multiple-point set of nearby or adjacent samples is denoted B,. The
conditional probabilities of type P(A|B,) can be calibrated with multiple-point
statistics obtained from configurations of the conditioning information (indicator-
coded samples and previously simulated nodes). These multiple-point statistics
are estimated from the frequencies of a fixed set of spatial configurations, extracted
from production information from a set of mined-out benches. If informed, any
arrangement of the four adjacent nodes to the one being simulated can be con-
sidered to extract a probability of the indicator value at the location of interest,
given the indicator codes at the same threshold for the informed adjacent nodes.
The multiple-point event, formed in this case by ng, =2, 3, or 4 nodes, allows the
inference of P(A|B;).

The integration of both sources of information is made under the assumption
of conditional independence, which allows the calculation of P(A|B;, B,) without
requiring the joint distribution of B, and B,.

The general framework presented in the previous section is used to integrate
information from two sources to a data set from an operating mine. The two
sources of information are (1) exploration sample data and (2) production data.

The methodology for integrating these sources of information can be summarized
as

1. estimate the indicator values for several thresholds by simple indicator
kriging with the exploration sample data;

2. estimate the conditional probability, given a set of multiple-point config-
urations from blasthole data. These conditional probabilities are inferred
from the frequency of blasthole samples being below a threshold, given
the values of surrounding blastholes;

3. integrate the two conditional probabilities from indicator kriging and from
the multiple-point configuration by assuming conditional independence.

A GSLIB-type program to calculate the conditional probabilities, given

_ multiple-point information, was prepared. The integration of the two sources of in-

formation under the assumption of conditional independenced was performed with
amodified version of the program SISIM in GSLIB (Deutsch and Journel, 1998).

It is worth noticing that this assumption does not distinguish between the
two cases presented schematically in Figure 2. The two sources of information
are deemed independent of each other, when they are used to estimate A. Screen-

g and redundancy of the information from several sources is not explicit when
assuming conditional independence. The consequences of assuming conditional
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Case 1 Case 2

Figure 2. The assumption of conditional independence of the sources of information, given
the event of interest, is highlighted in this schematic example. The assumption cannot
distinguish between Case 1 and Case 2. The redundancy between the events and possible
screening is not accounted for: data events By and B, are more redundant in Case 2.

independence have not been investigated because of the difficulty in finding alter-
native models that quantify the redundancy (Ortiz, 2003).

CASE STUDY: PORPHYRY COPPER DEPOSIT

The objective of this case study is to show the implementation of the method-
ology presented and discuss some of the details of integrating information from
multiple sources. Conventional sequential indicator simulation and the proposed
method accounting for multiple-point statistics are considered.

In this application, the event A is the probability of a given uninformed node
at location u to be below the current threshold z, for K thresholds. Two sources
of information are available. We call B; the set of single points found within
a search neighborhood that are used to estimate the probability at u (event A),
by simple indicator kriging. They correspond to individual drilthole composites.
This means that P(A|B,) is the simple indicator kriging estimate at u. A second
source of information comes from the blasthole data set. We call B, the event
of having any multiple-point configuration depicted in Figure 3 around u. The
conditional probability of the event A at location u is estimated on the basis of the
availability of sample data or previously simulated nodes at the four nodes adja-
cent to u. This multiple-point probability corresponds to P(A|B,). The proposed
indicator simulation method under the assumption of conditional independence
provides an estimate for the conditional probability at u based on both sources of
information:

P(A)
_ P(A)
P(AIB1. By) = 33 p@&m)  PAB) ®)
P(A) T PAB) ~ P(ABy)
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F igure 3. Multiple-point patterns with adjacent grid nodes. The gray node is the one being
estimated. The patterns correspond to the four adjacent nodes to the node of interest. The
probabilities are extracted from the blasthole data set even when some of the nodes ar’e not
informed, generating the 3-, 2-, 1-, and O-point patterns.

Data

Two data sets are available for this study. The data correspond to copper
grades from drillhole and blasthole samples for several benches of a porphyry
copper deposit.

. The drillhole database has 12-m composites that correspond to the bench
height. .Sev§:raI rock types are available, but only one homogeneous geological
population is presented here. A plan view of the drillhole data for one bench is
presented in Figure 4. The average spacing between drillholes is around 50 m.

Blastholes for several benches are available. Blastholes are drilled at the
be':nch height. A view of the blasthole information for one bench is presented in
Flgure. 5. The samples are regularly spaced on a 10 x 10 m grid. Blastholes are
more 1rregglar in the perimeter where damage control on the walls requires a
closer spacing. Although the blastholes appear like an exhaustive sampling, they
represent less than 1/1000th of the rock mass and provide little information (;n the
heterogeneity at less-than-10-m spacing.

The blasthole information from the two lower benches is kept aside for the
final comparison of performance of the methods.
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Figure 4. Plan view showing the drillhole information for a particular
bench.

Declustering is required to obtain a representgtive reference distribution for
simulation. A cell declustering procedure is applied tf) find th@ repres§ntat1vle
mean. Given the spacing of the data, an anisotropic cell is used with a horizontal-
to-vertical size ratio of 4:1, since the vertical spacipg of the samples is 12 rr31 and
the drillhole spacing is approximately 50 m. A cell size of 120 x 120 X ?:0 m’ was
chosen. The declustering weights are used to correct the cumulatllve.dlst.rlbutl.oﬁ
function value below each threshold. The procedure generates a dlstrlbutlog W.lt
a mean of 1.068% Cu. The original value was 1.157% Cu. The standard dev1§t1on
remained unchanged at 0.548% Cu. The mean of the blasthole data used to' mfer
the variograms and multiple-point statistics is 1.249% Cu with a standard deviation
of 0.620% Cu.

Comparison of Data Sets

The two data sets have been validated by the mine staff and are considered
unbiased. Statistics from the drillhole and blasthgle data sets were ‘compare;d.
Paired samples from both databases correlate .qulte well. Cons1der1ng are 3;
tive nugget effect of 30%, a correlation coefficient of p = 0.64 for pairs up
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Figure 5. Plan view showing the blasthole information for a particular
bench.

10 m apart seems reasonably good. Trends show the same behavior in the three
principal directions for both data sets. Trends are not pronounced. Enough con-

ditioning information is available to control any local variation of the mean and
variance.

Variogram Modelling

Ten thresholds are used to obtain an adequate discretization of the conditional
distributions. The selection of these 10 values calls for several considerations: the
full distribution should be adequately sampled by these values, that is, selecting
values that are regularly spaced (in terms of probabilities) is convenient because
interpolation between thresholds is simplified; the adequate characterization of
high grades is required, hence additional thresholds are located in the high tail
of the distribution, however, variogram inference becomes more difficult as the
threshold is more extreme. The 10 threshold values correspond to the nine deciles in
the clustered distribution, and an additional threshold at the quantile 0.95. This last
value will help characterizing the high values, minimizing extrapolation problems
due to the skewness of the distribution. The proportions below the thresholds
considering the declustering weights are used within the indicator simulation.

555
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Table 1. Threshold Definition for Indicator Variogram Calculation and Simulation
o cooceQ
Threshold number 1 23 4 5 6 7 8 9 10 2| 83288228 FR 2
Threshold value 058 0.73 084 095 1.08 122 136 156 191 2.18 . B cocococcocoooo
Clustered quantile 0.10 020 030 040 050 0.60 0.70 0.80 090 095 = o0 :’oo S 8 g g % g0 ‘Q pal=
Declustered quantile 0.15 028 038 047 057 0.68 076 085 093 097 k= & Z | 9=
g
= = cooooooQ
M S coocScoSsao
. 2 ¥z
Table 1 shows the threshold values, proportions that fall below that threshold
in the clustered distribution, and the proportions corrected to account for the =| »x2g83838388838y9
clusters. « Soococ oS oo So
The main directions of anisotropy were found at N30°W, N60°E, and vertical. ) coocoooo
This is consistent with the geology of the region and with previous studies over 2 § wgng g 8 % $3 8
this area. E
Variogram modelling considers that variogram models for adjacent thresholds g o | B cooccacaac
must be consistent and will likely vary smoothly. =l=1 g § 2HFEL8R8L8aA
Table 2 shows the parameters for the models fitted to the experimental var- g =l
iograms. Three structures are used to model the variogram: two spherical and E = z2|l cccccoooos
one exponential. A test of bi-Gaussianity is performed on the normally trans- & =] § § § EEIEREA
formed data. The ratio between the square root of the variogram of normal scores ;;f z
and the corresponding variogram of order 1 (or madogram) should be approx- 5 N [,
imately constant for all distances and equal to /7 ~ 1.77, which is not the 3 Al 222882883z
case (Fig. 6). A multi-Gaussian approach would not be appropriate for this data Z
el ] [cleBelel-ReRelolole]
set. S P ERIRAKSERBBER
hel
=
. . o g g 5 goJ S oo oo ooo
Multiple-Point Statistics Inference 2] 2 2 S9gS8LS2SS
M ERE:
Blasthole data are used to infer multiple-point statistics. The scattered blast- =12
. . . . . el & Zl coccococococooo
hole locations are associated with the closest point on a regular 10- by-10 m grid. S| qutosSswugs
If more than one blasthole is within a cell, only the closest one to its center is Z
assigned to the node and all others are dropped, which implies a small loss of . S oo oo
information. The frequencies of multiple-point configurations for all the patterns mz] 88282838233
shown in Figure 3 are inferred. Again, the two benches used for validation are not
considered during the inference of multiple-point statistics. Inference is made by E
simply counting how many times the central node of the multiple-point configu- IR N
ration is below the threshold, given the indicator values of the four adjacent nodes 9| cccoccssssSS
for that same threshold, if informed. This count is divided by the total number of z
multiple-point events with the same configuration to approximate the frequency
of this event.
.Figure 7 shows the indicator maps from the blasthole data set for one bench "‘g 2oL eSS @
considering a regular two-dimensional grid defined by the parameters in Table 3. Sl 333222224
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Simulation must be done at the same resolution as the multiple-point
information.

Sequential Indicator Simulation

One hundred realizations obtained by sequential indicator simulation (SIS)
are generated (Deutsch and Journel, 1998). Thresholds and corrected proportions
presented in Table 1 are used. The conditioning data corresponds to the drill-
hole samples. Interpolation between thresholds is done linearly, while for the
tails, the shape of the global declustered distribution is rescaled for extrapolation,
considering a minimum copper grade of 0.0% and a maximum of 7.5%. The
grid specification is as defined in Table 3. Two benches are simulated. These
are the same ones where blasthole information is held for validation. The search
parameters are presented in Table 4.

Maps of the two benches for the first two realizations obtained by sequential
indicator simulation are presented in Figure 8.

Validation of Results

Realization is checked for data, histogram, and indicator variogram re-
production. The mean and the variance of each realization is calculated and

Test of biGaussianity

Ratio

1,65 J T T T
0 20 40 60 80 100 120 140 160
Distance

[—®="Horiz. N30W = 8 - Horiz N60E —— Verlical = |

Figure 6. Test of bi-Gaussianity for the data. The plot shows the ratio between the square
root of the variogram of normal scores over their variogram of order 1. This ratio should be
constant for all distances and equal to /7.
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Figure 7. Indicator values of the scattered blasthole data for a particular bench approximated by a regular grid.
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Table 3. Grid Definition for Multiple-Poin
Inference and Simulation '

o Number Grid
Direction of nodes spacing
Easting 50 10.0
Northing 80 10.0

generated.
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Table 4. Simulation Parameters

Max.. data and prev. sim, nodes for kriging 24
Multiple-grid search levels 3
Max.imum search radius horiz. 300 m
Maximum search radius vertical 150 m
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Figure 8. Maps of the two simulated benches for the first realization by SIS.

trade-off is an inflation of the variance of the realizations (Fig. 10), because of the
larger variance of the blasthole data.

Maps of the first two realizations are shown in Figure 11. Comparing these
maps with the ones obtained by SIS (Fig. 8), the higher connectivity of highs and
lows can be appreciated.

As before, the drillhole samples are assigned to the nodes in the grid. The
same procedure than in SIS is used and around 90% of the samples are repro-
duced, with the other 10% not assigned to a node because a closer sample was
available.

The impact of adding multiple-point information to the models is reflected
in the reproduction of the indicator variograms. A slightly larger range is seen in

Means of Realizations Variances of Realizations
1 1 Number of Data 100

Number of Data 100
mean 1.064

std. dev. 033

coef. of var .031
maximum 1.141
upper quartile 1.087
median 1064
lower quartile 1.037
minimum 986

| mean 298
.160_] std. dev. 025
coet. of var 083

.120_| maximum 359

1 upper quartile 315

] median 297
120_] lower quartile 281
1 minimum 241

.080_]

Frequency
Frequency

080_]

-040_]

H—L 000}

200 250 300 -350 400

.040_|

.000_] ﬁ

+ T T
-900 1.000 1.100 1.200

Figure 9. Histograms of the means and variances of the realizations by SIS. The dots below the
histograms represent the corresponding reference values.
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ions
Means of Realizations Variances of Realizatiol Number of Data 100

Number of Data 100
mean 1.054

std. dev. .038

coef. of var 036
maximum 1.152
upper quartile 1.083
dian 1.055
lower quartile 1.030
‘minimum 967

std. dev. .033
coef. of var .091
maximum 469
upper quartile 387
median 364
lower quartile 340
minimum 274

160 4
4 1204

120 ]
] 080_|

Frequency

.080

Frequency

.040_]

900 1.000 1.100 1.200 200 E

Figure 10. Histograms of the means and variances of the realizations under the a§sumption of
conditional independence. The dots below the histograms represent the corresponding reference

values.

most cases, which is consistent with results obtained by other researchers (Deutsch

and Gringarten, 2000). . . .
Order relation deviations are slightly higher than in SIS. Corrections are on

average smaller than 2.5% (compare with 1.5% for S18), with maximums reaching
up to 40% (compare with 20% for SIS).

Comparison of Results

The average correlation of the simulated nodes with the validgtion de_1ta
could be considered: p = 0.30 for SISIM and p = 0.35 when multiple-point

North

900

400 East 900

" East

Figure 11. Maps of the two simulated benches for the first realization accounting for
multiple-point statistics.
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statistics are used; a significant improvement. The quantity of metal above a
cutoff grade of 1.0% Cu can also be compared to the blastholes kept back:
5.89% less for SISIM and 2.89% less when multiple-point statistics are used;
a significant improvement. Comparisons are notoriously difficult because it is
difficult to arrive at general results. Moreover, the performance of the compet-
ing techniques can be very sensitive to many interdependent implementation
decisions.

As a final note, we must emphasize that the multiple-point statistics are not
honored by the proposed method. However, some of the higher order features
are introduced into the generated models, by locally modifying the probabilities
obtained by indicator kriging. The generated models still look like realizations
from an indicator method.

CONCLUSIONS

Incorporating multiple-point statistics in a Bayesian framework and under
the assumption of conditional independence between the sources of information
can be performed by the proposed indicator technique.

The theoretical framework has been presented for a general case, and the case
study showed the implementation details, advantages, and some of the problems
that can be encountered in practice.

Inconsistency between the different sources of information is reflected in the
final models. This problem was overcome by adjusting the “global” probabilities
in the expression to integrate two sources of information. The corrected method
gave an unbiased estimate of the conditional probability.

The problem of the resolution (grid spacing) of the multiple-point data and
final numerical model was not addressed and remains as a research area in multiple-
point geostatistics. Another problem not addressed in this article is that a random
function model strictly stationary is required to infer multiple-point statistics from
a training set. Departures from this assumption are not investigated but are likely
to happen since actual data cannot always be properly modelled with a stationary
random function.

The method could be applied to integrate multiple-point information from
more than one source. A straightforward application could be to use the fre-
quencies of multiple-point configurations for three or more adjacent samples in
the drillholes in addition to the two-dimensional configurations used in this case
study, extracted from blasthole data. This would integrate multiple-point infor-
mation in three dimensions to the conventional sequential indicator simulation
method.

Comparison of the performance of the models is difficult and deserves further
investigation. Historical mill data could be used to evaluate the impact of adding
multiple-point information to the models.
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